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INFLUENCE OF COMPRESSION AND SHEAR ON THE
STRENGTH OF COMPOSITE LAMINATES WITH

Z-PINNED REINFORCEMENT

T. Kevin O’Brien1, Ronald Krueger2

Abstract

The influence of compression and shear loads on the strength of
composite laminates with z-pins is evaluated parametrically using a 2D
Finite Element Code (FLASH) based on Cosserat couple stress theory.
Meshes were generated for three unique combinations of z-pin diameter and
density. A laminated plate theory analysis was performed on several layups
to determine the bi-axial stresses in the zero degree plies. These stresses, in
turn, were used to determine the magnitude of the relative load steps
prescribed in the FLASH analyses. Results indicated that increasing pin
density was more detrimental to in-plane compression strength than
increasing pin diameter. Compression strengths of lamina without z-pins
agreed well with a closed form expression derived by Budiansky and Fleck.
FLASH results for lamina with z-pins were consistent with the closed form
results, and FLASH results without z-pins, if the initial fiber waviness due to
z-pin insertion was added to the fiber waviness in the material to yield a total
misalignment. Addition of 10% shear to the compression loading
significantly reduced the lamina strength compared to pure compression
loading. Addition of 50% shear to the compression indicated shear yielding
rather than kink band formation as the likely failure mode. Two different
stiffener reinforced skin configurations with z-pins, one quasi-isotropic and
one orthotropic, were also analyzed. Six unique loading cases ranging from
pure compression to compression plus 50% shear were analyzed assuming
material fiber waviness misalignment angles of 0, 1, and 2 degrees.
Compression strength decreased with increased shear loading for both
configurations, with the quasi-isotropic configuration yielding lower
strengths than the orthotropic configuration.

                                                  
1 Army Research Laboratory, Vehicle Technology Directorate, Langley Reseach Center,Hampton, VA.
2 National Institute of Aerospace (NIA), 144 Research Drive, Hampton, VA.
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List of Symbols

C length of resin pocket parallel to fiber direction

Ar fraction of the total reinforced area covered by z-pins

AZ cross sectional area of a single z-pin

Dz z-pin diameter

Dz’ height of z-pin plus resin pocket normal to fiber direction

d fiber diameter

E11, EL Stiffness of lamina parallel to fiber direction

E22, ET Stiffness of lamina transverse to fiber direction

ETc Compression stiffness of lamina transverse to fiber direction

G Shear modulus

Gf Fiber shear modulus

GLT, G12 Lamina shear modulus in principal material directions

Gsec Lamina secant shear modulus

Hz vertical spacing between z-pins in unit cell

Lz Horizontal spacing between z-pins in unit cell

n Ramberg-Osgood curve fitting parameter

Nx, Ny Axial force resultant on laminate in X,Y direction

Nxy Shear force resultant on laminate in X-Y plane

rz areal density of z-pins

ux, uy Displacement in X, Y direction

Vf Fiber volume fraction

w kink band width
α Ramberg-Osgood curve fitting parameter

β kink band inclination angle
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γe Effective shear strain

γy Yield strain in shear

ν12 Lamina Poisson’s ratio

€ 

φ Fiber misalignment angle

σc Strength, critical value of stress

σTy Yield strength in tension

σxx, σyy Normal stress in X, Y direction

σxy, σyx Shear stress in X-Y plane

σult Strength of skin/stiffener-flange laminate

σultc Compression strength of skin/stiffener-flange laminate

σ11, σ22 Normal stress in 1, 2 direction

σ12, σ21 Shear stress in 1-2 plane

τe Effective yield strength in shear

τy Yield strength in shear

τxy, τyx Shear stress in X-Y plane

τ12, τ21 Shear stress in 1-2 plane
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Introduction

One of the most common failure modes for composite structures is
delamination [1-2]. Recently, z-pins* have been proposed to provide
through-thickness reinforcement to composite laminates through a
combination of friction and adhesion [3-6]. Z-pins are pultruded rods of
carbon fiber and epoxy matrix. The z-pins are ultrasonically inserted through
the thickness of a laminated composite prepreg, which is then cured in an
autoclave. This approach to through-thickness reinforcement offers an
alternative to stitching, and can provide much higher areal densities of
reinforcement [7]. Furthermore, z-pins may be used effectively to reinforce a
local region of a component, such as a terminated stiffener flange, without
requiring a different manufacturing procedure than the rest of the structure.

Although the toughening properties of stitches, z-pins and similar
structures have been studied extensively, investigations on the effect of z-
pins on the in-plane properties of laminates are limited [7-9]. Steeves
examined the effect of z-pins on the in-plane tensile and compressive
properties of composite laminates [7]. He demonstrated that disruption in the
alignment of the fibers in the composite leads to a significant reduction in
the in-plane compressive strength. The z-pins may cause significant
misalignment of the fibers of the composite because the diameter of the z-
pins (~280 to 510 µm) is large relative to the diameter of the fibers (~7 µm).

Previously, Sun and coworkers studied the influence of shear loads on
the uni-axial compression strength of composites by testing an off-axis
unidirectional lamina and extrapolating the compression strength [10-12].
They found that the addition of small shear loads significantly reduce the
compression strength of unidirectional composite lamina. In this study, the
influence of additional shear loads, along with axial compression, on the
strength some commonly utilized laminates with z-pins will be evaluated
parametrically. First, closed form expressions for compression strength of
composite lamina will be reviewed and compared to FE based predictions.
Next, the strength of some typical laminates, with and without z-pins, under
combined compression and shear loads will be predicted.

                                                  
* The generic term z-pin will be used throughout the paper versus the trade mark Z-Fiber™ registered by
Aztex Inc.
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Background

In general, strength is defined as the net cross sectional stress at the
maximum load achieved during testing. The compression strengths of
unidirectional fiber-reinforced composite lamina are much less than their
corresponding tensile strengths. This lower compression strength is typically
attributed to the mechanism of fiber micro-buckling where the fiber looses
the local support of the surrounding matrix material. As shown in figure 1,
micro-buckling initiates from an imperfection (fiber waviness with
misalignment angle 

€ 

φ ,) that forms a kink band of width, w, and inclination
angle, β.

Several models have been proposed over the years for predicting the
compression strength of unidirectional composite lamina. Rosen assumed
that the micro-buckling mechanism that leads to collapse is an elastic
bifurcation [13].  This leads to the simple relationship

  

€ 

σ c = G (1)

where “G” is the lamina shear modulus. However, this elastic bifurcation
assumption leads to an over-estimation of compression strength by a factor
of four [14]. Argon [15] later developed a simple expression for
compression strength

€ 

σc = τ y /φ (2)

based on the assumption that micro-buckling was influenced primarily by
plastic deformation in the matrix (governed by the yield strength in shear, τy)
and local misalignment between the fiber direction and the load axis, 

€ 

φ , due
to fiber waviness in the material. Hence, the composite lamina was assumed
to fail in compression via imperfection sensitive plastic buckling. Budiansky
and Fleck [14] further refined this approach for a composite with a matrix
that undergoes strain hardening, with the strength given as
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€ 

σc
G

=
1

1 + n α( )1/n
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γ y n − 1( )
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n

(3)

where α  and n are parameters in the Ramberg-Osgood matrix strain
hardening law, below, and the shear strain γy = τy/G

€ 
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For inclined kink bands, where β>0, the Budiansky and Fleck equation
becomes

€ 

σc
G

=
1 + R2 tan2 β

1 + n α( )1/n
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γ y n − 1( )
1 + R2 tan2 β

 

 
 

 

 
 

n−1
n

(5)

where R is defined as

  

€ 

R =
σTy
τy

≈
ET
G

(6)

where σTy is the plane-strain lamina yield strength in transverse tension, ET

is the lamina transverse Young’s modulus, and α and n are parameters in the
modified Ramberg-Osgood matrix strain hardening law
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where the effective shear stress is

  

€ 

τe = σ21 −
σ22

2

R2 (8)

and the effective shear strain is

  

€ 

γe =
1

Gsec
−

1
G

 

 
 

 

 
 τe (9)

where Gsec is the secant modulus of the shear stress versus total shear strain
curve for the composite lamina.

Figure 2 shows the compression strength of a typical carbon epoxy
composite lamina as predicted from equations 3 and 5 as a function of the
fiber misalignment angle, 

€ 

φ , due to fiber waviness. Results are plotted for
two different kink band inclination angles (β=0 and 30 deg) each evaluated
assuming a shear yield strength of 108 Mpa and using α = 3/7 and two
different exponents (n=3,19) in the Ramberg-Osgood strain hardening law.
As shown in figure 2, compression strengths were significantly degraded for
very small amounts of fiber waviness (1-2 degrees). However, compression
strengths were fairly insensitive to n. In addition, zero degree kink band
inclination angles gave the most conservative results. Angles greater than
zero have been attributed to coupon edge effects [16-18].

In order to better assess the influence of critical parameters on lamina
compression strength, Fleck and Shu developed a finite element code called
FLASH. This FE code is based on a 2D general Cosserat couple stress
theory that assumes the unidirectional composite lamina is a homogeneous
anisotropic material that carries couple stress as well as classical Cauchy
point stress [19-21]. The constitutive response is deduced from a unit cell
consisting of a fiber, represented by a linear elastic Timoshenko beam,
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embedded in a non-linear elastic-plastic matrix. The fiber diameter, d, is the
length scale in the constitutive law that controls fiber bending resistance.
The continuum theory was implemented within a two-dimensional finite
element code that uses 6-noded triangular elements with 3 degrees of
freedom at each node (two-displacements and one rotation corresponding to
rotation of the fiber cross section). The finite element procedure is based
upon a Lagrangian formulation of the finite deformation of the composite
and can accommodate both geometric and material non-linearities. The code
models finite deformation using a Newton-Raphson incremental solution
procedure with a modified Riks algorithm in the final stage to handle snap-
back behavior associated with fiber micro-buckling. Boundary loading is
piecewise proportional with a loading parameter, λ, for each loading stage
[20].

The FLASH code assumes micro-buckling initiates from an
imperfection in the form of fiber waviness. Inputs include lamina stiffness
properties (EL, ET, ETc, GLT, Gf) normalized by the shear yield strength (τy)
and Ramberg-Osgood strain hardening law parameters (α,n). FLASH allows
options for input of fiber misalignment angle due to fiber waviness either as
(1) an elliptical patch of waviness, or (2) an arbitrary distribution of initial
fiber waviness through initial misalignment angle, 

€ 

φ  , at the Gauss
integration point for each element. The first option prescribes the elliptical
patch along one edge of the unit cell, and hence, was not useful for this study
with an embedded void to simulate a lamina with an embedded z-pin.
Steeves used the second option to input fiber misalignment distribution
obtained from digital image analysis of specimens tested in a Scanning
Electron Microscope (SEM) [7].

Analysis Formulation

For this study, the FLASH code was obtained from Cambridge
University and was installed on a Unix based workstation at NASA Langley.
Sikorsky Aircraft Company manufactured carbon epoxy laminates
reinforced with small z-pins of 0.280 mm (0.011 in) diameter and large z-
pins of 0.508 mm (0.02 in) diameter. Three specimen types were
manufactured containing reinforcement fields with 4% areal density for the
large z-pin and 2% and 4% areal density for the small z-pins respectively.
Finite element meshes with the z-pin and surrounding resin rich regions
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simulated as voids were generated for three unique combinations of pin
diameter and density. Geometric parameters used to generate the finite
element meshes of the unit cells for different z-pin diameters and z-pin areal
densities are shown in figure 3. The size of the unit cell depends on the areal
density, rz (in %) of the z-pins in the unit cell and the diameter of a single z-
pin, Dz as shown in Figure 3. The spacing Lz=Hz for a perfect, rectangular z-
pin field can be calculated as

€ 

LZ = HZ =
AZ
Ar

 (10),

where AZ is the cross sectional area of a single z-pin

€ 

AZ =
πDZ

2

4
 (11)

and Ar denotes the fraction of the total reinforced area covered by z-pins

€ 

Ar =
rZ
100  (12).

The length of the resin pocket, C, may be determined from micrographs of
the reinforced laminate.

It was assumed that the fiber is completely surrounded by resin as
shown in figure 4, and hence, the transverse dimension of the void, D’z, was
increased by 0.02 mm compared to the z-pin diameter, Dz. The unit cell
parameters were measured from micrographs taken from different specimens
with z-pins. Averaged data shown in table 1 were used as input for the
FLASH finite element analyses. Finite element meshes, are shown in figure
5 for the small pin with 2% and 4% areal density and the large pin with 2%
areal density. All meshes generated were composed of six-noded triangular
plane-strain elements. The size of the elements was varied to provide the
greatest mesh refinement near the resin pocket, and in the region of greatest
fiber misalignment. All dimensions were normalized by the fiber diameter,
as required as input to FLASH. Carbon Epoxy material data, including the
measured strain hardening parameters for the Ramberg-Osgood law, were
measured at Sikorsky Aircraft Company and used as input for the FLASH
analyses (table 2).
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The FLASH code requires input of the fiber misalignment angle
representative of the inherent waviness in the composite material. Input of an
arbitrary distribution of the fiber misalignment in FLASH is possible.
However, these data were not readily available. Hence, the second option for
input of fiber misalignment angle was used to prescribe a uniform
distribution of constant fiber waviness in unit cells simulating lamina with
embedded z-pins. This option was also chosen to provide a conservative
estimate of the influence of fiber waviness. In order to perform a parametric
study of the effect of fiber misalignment on laminate in-plane strength,
uniform distributions of initial fiber misalignment angles from 0 to10
degrees were input to each of the three models.

A laminated plate theory analysis was performed on three layups,
subjected to either pure compression or equal compression and shear loading
(Nx = Nxy), to determine the bi-axial stresses in the zero degree plies (fig.6).
Normalized ply stresses are shown in table 3. Transverse (σ22) and shear
(τ12) stresses in the zero degree plies were normalized by the axial
compression stresses (σ11) in the fiber direction to identify the relative
magnitudes of the zero degree ply stresses for the three laminates analyzed.
Transverse stresses were negligible, except for the cross ply laminate where
they consisted of only 2% of the axial compression stress. For the three
laminates subjected to combined external compression and shear loads of
equal magnitude, shear stresses in the zero degree plies where approximately
10% of the axial compression stresses for the orthotropic and quasi-isotropic
laminate, and approximately 50% of the axial compression stresses for the
cross ply laminate.

In order to perform a parametric study, these relative percentages of
axial compression, transverse tension, and shear stresses in the zero degree
plies were used to determine the magnitude of the relative load steps
prescribed in the FLASH analyses as shown in table 4. The compression
stress is gradually incremented by FLASH until it reaches the specified limit
defined by the user (σ11/τy = -1000, where τy is the shear yield strength of the
material). This limit was deliberately chosen to be well above the onset of
fiber microbuckling to assure that the analysis reached the failure point and
did not terminate prematurely. For the combined load cases, the other loads
were incremented in the proportions shown in table 4. A typical run lasted
just under two hours to obtain a strength prediction.
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Unit cells were analyzed for five load cases: (1) a pure axial
compression load case, (2) a combined axial compression and 2% transverse
tension load case, (3) a combined axial compression and 10% shear load
case,  (4) a combined axial compression and 50% shear load case, and (5) an
axial compression with both a 2% transverse tension load case and a 10%
shear loading. Load and boundary conditions used in this study for axial
compression (figure 7) were identical to those used by Steeves and others
[7,19]. However, appropriate load and boundary conditions had to be
determined before simulating shear loading in FLASH. Ultimately,
boundary conditions identical to those used for the simulation of axial
compression loading cases were used for shear loading (see Appendix).
These boundary conditions were selected for the remainder of the study
because they were also ideally suited for combining shear loading with axial
compression loading. Further details for setting up models of unit cells with
z-pins using FLASH are documented in reference 22.

Analysis Results

Figure 8 shows the compression strength, corresponding to the onset
of fiber microbuckling, as a function of fiber waviness for the three z-pin
configurations analyzed. Results indicated that increasing pin density was
more detrimental to compression strength than increasing pin diameter.
Figure 9 shows the technique used to calculate the misalignment angle, 

€ 

φ  ,
associated with z-pin insertion for the three unit cell geometries based on the
geometric points used to generate the unit cell finite element meshes [22].
The z-pin insertion angle was greater for the smaller diameter pins than for
the larger diameter pins. In figure 10, compression strength predictions for
lamina with z-pins were plotted as a function of the total misalignment angle
due to z-pin insertion and fiber waviness. This has the effect of offsetting the
z-pin results along the horizontal axis by the amount of the initial
misalignment due to z-pin insertion as shown in figure 9. FLASH results
were also generated for lamina with no-z-pins by closing the void to create a
new unit cell mesh (figure 11). Results are plotted in figure 10 for
comparison. As shown in figure 10, compression strengths of lamina without
z-pins agreed well with a closed form expression derived by Budiansky and
Fleck (eq.3). FLASH results for lamina with z-pins were consistent with the
closed form results, and FLASH results without z-pins, if the initial fiber
waviness due to z-pin insertion from figure 9 was added to fiber waviness in
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the material to yield a total 

€ 

φ  .

Figures 12-14 show the stress-displacement plots and shear stress
contours for the three z-pin configurations analyzed assuming three values of
fiber waviness (0,1 and 5 degrees). In the plots of stress versus displacement,
the average stress along the lower left edge of the unit cell is plotted versus
the displacement (normalized by the fiber diameter) at the lower left corner
of the unit cell [22]. The zero degree case reflects specimen response due to
initial misalignment associated with z-pin insertion from figure 9 alone.
Each stress-displacement plot has a maxima indicating the onset of an
unstable event (fiber microbuckling) followed by a finite deformation as the
kink band forms and grows. The shear stress contours are plotted at the final
load step and mimic the region where kink band formation would be
anticipated. This becomes increasingly more obvious for higher values of
fiber waviness.

As shown in figure 15, the addition of 10% shear to the compression
loading significantly reduced the lamina strength compared to pure
compression loading predicted by the Budiansky and Fleck equation. The
FLASH results with z-pins were still consistent with FLASH results without
z-pins when the initial fiber waviness due to z-pin insertion from figure 9
was added to fiber waviness.  Figures 16-18 show the stress-displacement
plots and shear stress contours for the three z-pin configurations analyzed
assuming three values of fiber waviness (0,1 and 5 degrees). As noted
previously for compression loading, each stress-displacement plot has a
maxima indicating the onset of an unstable event (fiber microbuckling)
followed by a finite deformation as the kink band forms and grows. The
shear stress contours, plotted at the final load step, clearly indicate the region
where kink band formation would be anticipated. These high shear stress
regions are more obvious for this combined compression and 10% shear
loading than for the compression only loading shown in figures 12-14.

As shown in figure 19, the addition of 50% shear to the compression
loading appeared to drastically reduce the lamina strength compared to pure
compression loading predicted by the Budiansky and Fleck equation.
However, the FLASH results with z-pins were no longer consistent with
FLASH results without z-pins when including the initial misalignment angle
due to z-pin insertion. The results for the 2% density small z-pin
configuration slightly decreased with fiber waviness angle. However, the
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results for the other two configurations did not vary with fiber waviness
angle. Figures 20-22 show the stress-displacement plots and shear stress
contours for the three z-pin configurations analyzed assuming three values of
fiber waviness (0,1 and 5 degrees).  Unlike the previous load cases, these
plots indicated no decrease in stress for two configurations, and only a very
gradual decrease in stress for the third configuration, with increased
displacement with no indication of an instability followed by finite
deformation. Furthermore, for two of the three configurations, the shear
stress contours plotted at the final load step did not clearly indicate if kink
band formation would be anticipated.  In addition, as shown in figure 23, the
applied shear stress was close to, and in one case exceeded, the shear yield
strength of the material (table 2). This is in contrast to the compression plus
10% shear case, also shown in figure 23, where the applied shear stresses
were consistently lower than the shear yield strength. Hence, gradual shear
yielding may be the failure mode for this compression plus 50% shear
loading rather than kink band formation. As shown in tables 3 and 4, this
load case corresponds to equal compression and shear loading on a cross-ply
[0/90]s laminate. Hence, laminates without 45 degress plies may be more
likely to fail by shear yielding than microbuckling.

As shown in figures 24-26, the addition of 2% transverse tension
(table 4) to pure compression loading, or to compression plus 10% shear
loading, has no significant influence on predicted strengths.

Strength prediction for stiffener reinforced skin laminates under
combined compression and shear loading

Two different stiffener reinforced skin configurations with z-pins
were analyzed (figure 27). The first configuration consisted of an 8-ply
(45/0/-45/90)s quasi-isotropic skin bonded to a stiffener with a 16-ply (45/0/-
45/90)2s quasi-isotropic flange. The second configuration consisted of a 6-
ply (45/0/-45)s orthotropic skin bonded to a stiffener with an 18-ply (45/0/0/-
45/0/45/0/-45/0)s flange. For both configurations, the total 24-ply combined
laminate where the skin meets the stringer flange was modeled with 2%
areal density small diameter z-pins (Dz = 0.28 mm). A laminated plate
theory analysis was performed for both 24-ply laminates using the carbon
epoxy material properties in table 5. These properties differ from those in
table 2 only for the lower value of E11 used to better represent the lamina
compression stiffness in the fiber direction. The applied net compression
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stress was specified and the corresponding stresses in the individual plies
were calculated.

For the quasi-isotropic configuration, the ratio of the applied net
compression stress to the compression stress in the zero degree plies was
0.392. Interestingly, although the skin and stringer flange alone were
balanced and symmetric laminates, the total 24-ply laminate was not.
Nevertheless, no significant coupling was predicted by laminate theory,
which yielded equal stresses in all the zero degree plies.

As expected, the 24-ply unsymmetric orthotropic configuration
exhibited compression and bending coupling resulting in the maximum zero
degree ply stresses in the outermost zero-degree skin ply. For this ply, the
ratio of the applied net compression stress on the laminate to the
compression stress in the zero degree ply was 0.480. The laminate theory
calculation was performed allowing the full bending deformation due to the
coupling that arises from the unsymmetric skin-flange laminate. If, however,
this bending deformation is constrained in the structural configuration, the
constraint should be applied when performing the laminate theory analysis
to estimate the zero degree ply stresses. Alternatively, the zero degree ply
stresses could be obtained directly from a numerical analysis of the skin-
stiffener region if the individual plies are modeled discretely.

Unidirectional compression strengths predicted from FLASH were
multiplied by the appropriate factor for each configuration and loading to
calculate predicted strengths for the skin/stiffener-flange laminates. For each
configuration, six unique loading cases ranging from Nxy/Nx = 0 to Nxy/Nx =
0.5, were assumed in the FLASH analysis using material properties in table
5 and assuming material fiber waviness misalignment angles of 0, 1, and 2
degrees. Table 6 shows the normalized zero degree ply stresses (axial,
transverse, and shear) for the six loadings on the two stringer reinforced skin
configurations analyzed. The axial compression stress in the zero degree
plies is shown as -1000 times the shear yield strength, τy. The magnitude of
the other normalized stress components are shown relative to the normalized
compression stress.  These relative magnitudes were used as input to the
FLASH code for each load case studied. No transverse stresses developed in
the zero degree plies for the quasi-isotropic configuration. Transverse
stresses in the zero degree plies of the orthotropic configuration were small,
with magnitudes of 3.5% of the axial compression stresses in the zero degree
plies.  For both configurations, the ratio of the shear stresses to the axial



15

compression stresses in the zero degree plies were roughly 10% of the ratio
of the applied shear to the applied compression, Nxy/Nx. For example, when
the orthotropic configuration has an applied shear load that is 50% of the
applied compression load (Nxy/Nx = 0.5), the resulting shear stress in the
zero degree plies is only 5% of the axial compression stress in the zero
degree plies (σ11/τy = -1000, τ12/τy = 50).

Figures 28 and 29 show the zero degree ply strengths as a function of
the misalignment angle predicted using the FLASH code with loadings
prescribed based on the ratio of axial compression and shear, Nxy/Nx. for the
two configurations analyzed.  Similarly, figures 30 and 31 show the
skin/stiffener-flange laminate strengths, corresponding to the onset of fiber
microbuckling in the zero degree plies, as a function of the misalignment
angle predicted using the appropriate laminated plate theory scale factor
described earlier for each configuration. The reduction in compression
strength with increased shear loading is apparent for both skin/stiffener-
flange configurations.

Figure 32 compares the strength of the skin/stiffener-flange laminates
for the quasi-isotropic and orthotropic skin/stiffener-flange configurations
for Nxy/Nx = 0.5. Results indicate that the quasi-isotropic configuration
should have lower strengths than the orthotropic configuration.

Figure 33 shows the combined shear plus compression strength, σult,
normalized by the compression only strength, σultc, as a function of the
normalized loading, Nxy/Nx, for the quasi-isotropic skin/stiffener-flange
laminate assuming three values of misalignment angle, 0,1 and 2 degrees.
Although the absolute strength is lower for laminates with larger
misalignment angles (fig.30), the normalized strength reduction (σult/σultc) is
slightly less for larger misalignment angles (fig.33).

Figure 34 shows the combined shear plus compression strength,
normalized by the compression only strength, as a function of the
normalized loading, Nxy/Nx, for the orthotropic skin/stiffener-flange laminate
assuming three values of misalignment angle, 0,1 and 2 degrees. Although
the absolute strength is lower for laminates with larger misalignment angles
(fig.31), the normalized strength reduction is slightly less for larger
misalignment angles (fig.34).
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Figure 35 compares the combined shear plus compression strength,
normalized by the compression only strength, as a function of the
normalized loading, Nxy/Nx, for the quasi-isotropic and orthotropic
skin/stiffener-flange laminates assuming a misalignment angle of one
degree. Although the strength is lower for the quasi-isotropic laminates than
the orthotropic laminates, the normalized strength reduction is slightly less
for the quasi-isotropic laminates.

Conclusions

The influence of combined compression and shear loads on the
strength of lamina in some commonly utilized laminates was evaluated
parametrically. A 2D Finite Element Code (FLASH) developed at
Cambridge University based on Cosserat couple stress theory was used to
model unit cells simulating unidirectional lamina with inserted z-pins. The
FLASH code assumes micro-buckling initiates from an imperfection in the
form of fiber waviness with a characteristic misalignment angle. Finite
element meshes with the z-pin and surrounding resin rich regions simulated
as voids were generated for three unique combinations of pin diameter and
density. Carbon epoxy material property data, including measured strain
hardening parameters for the Ramberg-Osgood law, were generated as input
for the FLASH analyses. A laminated plate theory analysis was performed
on three layups, subjected to either pure compression or equal compression
and shear loading, to determine the bi-axial stresses in the zero degree plies.
The relative percentage of axial compression, transverse tension, and shear
stresses on the zero degree plies was used to determine the magnitude of the
relative load steps prescribed in the FLASH analyses.

Parametric study results indicated that increasing pin density was
more detrimental to in-plane compression strength than increasing pin
diameter. Compression strengths of lamina without z-pins agreed well with a
closed form expression derived by Budiansky and Fleck. FLASH results for
lamina with z-pins were consistent with the closed form results, and FLASH
results without z-pins, if the initial fiber waviness due to z-pin insertion was
added to the fiber waviness in the material to yield a total misalignment.
Addition of 10% shear to the compression loading significantly reduced the
lamina strength compared to pure compression loading. Addition of 50%
shear to the compression loading appeared to drastically reduce the lamina
strength compared to pure compression loading only. However, the applied
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shear stress was close to, and in one case exceeded, the shear yield strength
of the material. Hence, for this loading failure is likely due to shear yielding
rather than kink band formation.

Two different stiffener reinforced skin configurations with z-pins, one
quai-isotropic and one orthotropic, were also analyzed. For both
configurations, the total 24-ply combined laminate where the skin meets the
stringer flange was modeled. A laminated plate theory analysis was
performed for both 24-ply laminates. The ratio of the applied net
compression stress on the laminate to the compression stress in the zero
degree plies was calculated to predict strengths for the skin/stiffener-flange
laminates. Six unique loading cases ranging from pure compression to
compression plus 50% shear were analyzed assuming material fiber
waviness misalignment angles of 0, 1, and 2 degrees. Compression strength
decreased with increased shear loading for both configurations, with the
quasi-isotropic configuration yielding lower strengths than the orthotropic
configuration. Although the predicted strength was lower for laminates with
larger misalignment angles, the normalized strength reduction (combined
loading strength divided by pure compression strength) was slightly less for
larger misalignment angles. Furthermore, although the predicted strength
was lower for the quasi-isotropic laminates than the orthotropic laminates,
the normalized strength reduction was slightly less for the quasi-isotropic
laminates.
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APPENDIX

Boundary Conditions and Shear load application for Unit Cells

The choice of available constraint conditions in FLASH was limited
compared to commercial finite element software packages. For example,
constraining the nodes along the top or bottom edge of the unit cell so that
the edge remains straight and can only move in y-direction was not possible.
This option would have been appropriate for enforcing pure shear
deformation. With these restrictions the following approach was used:

• Different load and boundary conditions, such as those shown in
figure A1, were chosen to simulate shear loading for simple
models without z-pins using the linear finite element code
ABAQUS®

• Based on the deformation plots, the best combination of load and
boundary conditions was selected and used for a model of nine
unit cells as shown in figure A2. The prescribed displacements in
Figure A1b could not be used in FLASH and were replaced by
shear stresses on the top edge as shown in Figure A2a. It was
assumed that the center cell is far enough away from the free
boundaries to be representative of a unit cell.

• A full analysis of the nine unit cell model was performed using
FLASH as shown in Figure A3.

• The deformed center cell shown in Figure A3b was selected as a
reference. This meant that load and boundary conditions for
subsequent models of unit cells had to be selected in such a way
that the deformations matched the reference as closely as possible

A finite element model of a unit cell subjected to shear loading is shown in
Figure A4a. Load and boundary conditions were identical to the case with
nine cells shown in Figure A3. The deformed plot in Figure A4b indicates
that the deformations of the top and bottom edges are excessively
constrained compared to the reference configuration in Figure A3b. It was
therefore decided to select a less rigid constraint.

The boundary conditions used for the models shown in Figures A5a
and A6a were identical to those used earlier for the simulation of axial
compression. Positive shear stresses were applied on all edges as shown in
Figure A5a, and negative shear stresses were applied to the model of
Figure A6a. The deformed configurations in Figures A5b and A6b suggested
that these load and boundary conditions allow more realistic shear
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deformation compared to the reference configuration in Figure A3b than the
load and boundary conditions represented in figure A4b. Hence, these
boundary conditions were selected for the remainder of the study since they
were also ideally suited for combining shear loading with axial and
transverse loading.
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Table 1

Carbon/Epoxy UD Prepreg Unit Cell Parameter Dimensions

Case A : Carbon/Epoxy UD Prepreg with 2% large diameter Z-Pins

from normalized with d

DZ 0.508 mm -

D’Z 0.528 mm 103.53

HZ 3.175 mm 622.55

LZ 3.175 mm 622.55

C 2.1844 mm 428.31

Case B : Carbon/Epoxy UD Prepreg with 4% small diameter Z-Pins

from normalized with d

DZ 0.28 mm -

D’Z 0.3 mm 58.8

HZ 1.2446 mm 244

LZ 1.2446 mm 244

C 0.868 mm 170.2

Case C : Carbon/Epoxy UD Prepreg with 2% small diameter Z-Pins

from normalized with d

DZ 0.28 mm -

D’Z 0.3 mm 58.8

HZ 1.7526 mm 343.65

LZ 1.7526 mm 343.65

C 0.868 mm 170.2
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Table 2

Carbon/Epoxy Material Properties

E11 161 GPa

E22 (tension) 11.4 GPa

E22 (compression) 12.8 GPa

G12 5.17 GPa

Gf 22 GPa

τy 39 MPa

d 5.1 µm

Vf 0.59

v12 0.32

α 0.00923

n 8.54
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Table 3

Normalized Zero-Degree  ply  Stresses from  Laminate Analysis

 external load Nx

Laminate σ11/σ11 σ22/σ11 τ12/σ11

[0/90]s 1 -0.02 (~2% σ11) 0

[0/±45]s 1 0.003 (~0% σ11) 0

[0/45/-45/90]s 1 -0.0001 (~0% σ11) 0

external load Nx= Nxy

σ11/σ11 σ22/σ11 τ12/σ11

[0/90]s 1 -0.02 (~2% σ11) 0.535 (~50% σ11)

[0/±45]s 1 0.003 (~0% σ11) 0.073 (~10% σ11)

[0/45/-45/90]s 1 -0.0001 (~0% σ11) 0.085 (~10% σ11)

Table 4

FLASH Input for Load Cases Used for Strength Reduction Analysis

axial
compression

compression/
2%transverse

tension

compression
10% shear

compression
50% shear

compression
2% tension
10% shear

σ11/τy -1000 -1000 -1000 -1000 -1000

σ22/τy - +20 - - +20

τ12/τy - - 100 500 100

τ21/τy - - 100 500 100
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Table 5

Carbon/Epoxy Material Properties

E11 (compression) 143 GPa

E22 (tension) 11.4 GPa

E22 (compression) 12.8 GPa

G12 5.17 GPa

Gf 22 GPa

τy 39 MPa

d 5.1 µm

Vf 0.59

v12 0.32

α 0.00923

n 8.54
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Table 6 – Normalized zero degree ply stresses in skin/ stringer-flange
laminates

Ply
Stress

Nxy/Nx

= 0
Nxy/Nx

= 0.1
Nxy/Nx

= 0.2
Nxy/Nx

= 0.3
Nxy/Nx

= 0.4
Nxy/Nx

= 0.5
σ11/τy -1000 -1000 -1000 -1000 -1000 -1000
σ22/τy 0 0 0 0 0 0
τ12/τy 0 10 19 29 38 48

(A) Quasi-isotropic configuration

Ply
Stress

Nxy/Nx

= 0
Nxy/Nx

= 0.1
Nxy/Nx

= 0.2
Nxy/Nx

= 0.3
Nxy/Nx

= 0.4
Nxy/Nx

= 0.5
σ11/τy -1000 -1000 -1000 -1000 -1000 -1000
σ22/τy 35 35 35 34 34 34
τ12/τy 0 10 20 30 40 50

(B) Orthotropic configuration
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Figure 2. Compression strength prediction

0

1000

2000

3000

4000

5000

0 2 4 6 8 1 0

phibar, degrees

Carbon Epoxy Unidirectional Lamina
no Z-pin (Budiansky&Fleck)

Strength ,
MPa

β=0, 
n=3

β=0,
n=19

β=30,
n=3

β=30, 
n=19

29



unit cell

 Lz 

 Hz 

 Dz 

 C

fiber orientation

C    size of resin pocket
Dz   pin diameter
D’z  pin + resin
Hz   vertical spacing
Lz    horizontal spacing
d      fiber diameter

 D’z 

Figure 3. Z-pin geometric parameters
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a) 2% small z-pin           b) 4% small z-pin            c) 2% large z-pin

Figure 5. FLASH models of carbon/epoxy lamina with embedded
z-pins

Figure 6. Laminate theory stress analysis
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Figure 7. Loadings on unit cells with z-pins  
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Shear Stress Contours

Figure 12. Influence of fiber waviness on response, small pin 2% areal density
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Shear Stress Contours

Figure 13. Influence of fiber waviness on response, large pin 2% areal density
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Shear Stress Contours

Figure 14. Influence of fiber waviness on response, small pin 4% areal density
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Shear Stress Contours

Figure 16. Influence of fiber waviness on compression plus 10% shear response, small pin 2% areal density

-50

0

5 0

100

150

200

250

300

350

- 1 0 1 2 3 4 5 6

Stress, 
MPa

u
x
/d

phibar = 0

-50

0

5 0

100

150

200

250

300

350

- 1 0 1 2 3 4 5 6

Stress, 
MPa

u
x
/d

phibar = 1

-50

0

5 0

100

150

200

250

300

350

- 1 0 1 2 3 4

Stress, 
MPa

u
x
/d

phibar = 5

41



Shear Stress Contours

Figure 17. Influence of fiber waviness on compression plus 10% shear response, large pin 2% areal density
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Shear Stress Contours

Figure 18. Influence of fiber waviness on compression plus 10% shear response, small pin 4% areal density
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Shear Stress Contours

Figure 20. Influence of fiber waviness on compression plus 50% shear response, small pin 2% areal density
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Shear Stress Contours

Figure 21. Influence of fiber waviness on compression plus 50% shear response, large pin 2% areal density
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Shear Stress Contours

Figure 22. Influence of fiber waviness on compression plus 50% shear response, small pin 4% areal density
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Figure 23. Ratio of applied shear stress at failure to shear yield
strength of carbon/epoxy
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Figure 24. Comparison of strength predictions
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Figure 25. Comparison of strength predictions
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Figure 26. Comparison of strength predictions
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Fig.27 Stringer reinforced skin configurations
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Fig.29 - Zero degree ply strengths as a function of fiber waviness angle for
the orthotropic stringer reinforced skin configuration
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Fig.30 – Skin/stiffener-flange laminate strengths as a function of fiber
waviness angle for the quasi-isotropic stringer reinforced skin configuration
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Fig.31 – Skin/stiffener-flange laminate strengths as a function of fiber
waviness angle for the orthotropic stringer reinforced skin configuration
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Fig.32 – Comparison of skin-plus-flange laminate strengths as a function of
fiber waviness angle for the quasi-isotropic and orthotropic skin/stiffener-
flange configurations.
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Fig.33 – Reduction in normalized compression strength for quasi-isotropic
configuration
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Fig.34 – Reduction in normalized compression strength for orthotropic
configuration
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a. Schematic of model subjected to corner loads

b. Schematic of model subjected to constant edge displacement
Figure A1: Load and boundary conditions used to introduce shear loading
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a. Schematic of finite element model with shear load and boundary conditions

b. Finite element mesh and highlighted center section
Figure A2: Finite element model with nine unit cells subjected to simple shear loading
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a. Deformed finite element model

b.  Detail of deformed center unit cell
Figure A3.  Analysis of model with nine unit cells subjected to simple shear loading
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a. Finite element model with load and boundary conditions

b. Deformed finite element mesh
Figure A4: Finite element model subjected to simple shear loading
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Figure A5: Finite element model of unit cell subjected to positive shear loading
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Figure A6: Finite element model of unit cell subjected to negative shear loading
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